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Abstract. This paper continues the work begun by D. Shanks and myself in [1] where certain 
cubic recurrences were used to give a very strong primality test. A complete characterization 
of the pseudoprimes for this test is given in terms of the periods of the corresponding 
sequences. Then these results are used to produce various types of pseudoprimes. A discussion 
of open problems is included. 

1. Introduction. In [1], D. Shanks and I presented a pseudoprimality test that was 
manifestly very strong. Unfortunately, it appears that pinning down just how strong 
is problematical. However, in [3] computations are reported on that further show 
that the pseudoprimes for this test are extremely sparse. In the present paper 
characterizations of these pseudoprimes will be given in terms of the periods of the 
given recurrent sequences. Then examples of pseudoprimes for certain sequences will 
be given together with the method for constructing them. 

The notation will be carried over directly from [1, Section 12]. Thus, r, s are 
integers, A(-I) = s, A(O) = 3, and A(1) = r. For any integer n, set 

A(n + 3) = rA(n + 2) -sA(n + 1) + A(n). 

Set 

f(X) = X3- rX2 + SX- 1 = (X- a)(X- /3)(X- y), 

and let K = Q(a, /, y), d = discriminant of I, 'K the integers of K. We have 

A(n) = a n + /n + yn. 

Associated to A = Af, we have three types of "signatures" of n mod m (at least, 
when f is a noncyclic irreducible cubic); that is, special forms for the sextuple of 
integers A(-n - 1), A(-n), A(-n + 1), A(n - 1), A(n), A(n + 1) read mod m [1, 
Section 13]. Each rational prime p, p + d, has one of these signatures, called S, Q, I 
which correspond respectively to f(x) split mod p, the product of a linear and 
irreducible quadratic, mod p, irreducible mod p [1, Section 14], respectively. The 
point is that it is difficult for a composite to have one of these signatures. 
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The paper is organized as follows. In Section 2 we give the characterization of 
these pseudoprimes. In [1, Section 17] we established a certain p-adic congruence for 
primes p and here, in Section 3, we show that remarkably the corresponding 
congruence holds for any pseudoprime as well. In Section 4 the so-called "outsiders" 
of [1] for pseudoprimes are characterized. Also in [1] the primality tests were 
strengthened by certain other criteria and in Section 5 we discuss these so-called 
"acceptable" signatures in order to guarantee that the examples constructed in 
Section 6 do satisfy these more stringent conditions. Finally in Section 7 various 
open problems are discussed. 

I would like to acknowledge my indebtedness to D. Shanks for his help and 
insight which have been so useful to me in the preparation of this paper. I would 
also like to thank J. Sonn for many helpful discussions. I would finally like to thank 
the Technion in Israel for their hospitality and stimulating atmosphere during the 
preparation of this paper. 

2. Characterizing Pseudoprimes. We call a composite n a pseudoprime A (PSP A) 
if n has either an S, Q or I signature mod n (just say n has an S, Q or I signature). 
We denote by W(m) the period of A(n) mod m. 

For a composite integer n > 0, write n = p~i ... p", as its prime factorization. 

LEMMA 1. Let T = S, Q or I. Then n has a T signature if and only if for each i, 
1 < i < t, n has a Tsignature mod pi . 

This follows immediately from the definition of signature. Of course, each of the 
primes will have their own signatures. The point is to see how various primes with 
various signatures can be combined to obtain n as a PSP A. We need some lemmas 
concerning the period of A(n). 

LEMMA 2. Let ?1, ?2 EIK, 9f be an integral ideal of IK' m > 1 be a rational integer 
in Wf. Assume e1- 2 (mod Wi). Then for all] > 0, 

mim EAm' (mod 9fj ). 
Proof. Use induction on j, the case j = 0 being the assumption. Assuming the 

result for j- 1, we have 8 E 9Wfi?l- such that <1 = cmT'' + S. Then 

-1 = (,.M + = cmj + m ul(m-1) + 82p 

for some p E IK. Since mS, 82 E- 9f we are done. E 

LEMMA 3. Let m be an integer such that gcd(m, 2d) = 1. Then for allj > 1, 

W(mj) I m'-lW(m). 
Proof. From Theorem 7 of [1] we see that this follows directly from Lemma 2 for 

thecase El = aW(m)I f3W(m) TW(m), A = 1 ,9 =MIKI i= 1 E 

LEMMA 4. Assume n = pvk with gcd(p,2d) = 1 and p prime. Then n has a 
signature mod pP implies W(p') = W(p). 

Proof. Suppose n has a T signature mod pV (T = S, Q or I). From Lemma 3 we 
have that W(p') I p"1W(p). Moreover, we have from [1, Theorem 7] that 

W(p ) p k-1 if T= S, 

W(pv)Ip2pk2- 1 if T= Q, 

W(p>)Ipv(pkk2+ k) + 1 if T= I. 
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Since p>- 'is prime to each of the three numbers on the right, we see that 
W(pv) I p VlW(p) implies W(p )IW(p). Then we are done since W(p) W(pv). 

We now state the main result: 

THEOREM 1. Let n be a positive integer. Let p be a prime such that p I n, p + 2d and 
write n = pvk (p I k is permissible). In the table below, for p being of the listed type 
(S, Q or I) (column 1) and v satisfying the listed condition (column 2) we have 
that n has the listed signature (column 3) mod pV if and only if W(pv) = W(p) 
and the condition listed in the last column is true. If p is an S prime, then f(x)= 
(x - a)(x - b)(x - c) (mod p>) for integers a, b, c, and the condition listed in the 
last column is for some permutation of a, b, c. 

p_ n Condition: W(p') = W(p) and 

S _ S k = 1 (mod W(p)) 
S _ Q ak 1, bk c (mod pP) 
S I ak b, bk c (mod p') 
Q even S k 1 (mod W(p)) 
Q odd S k p (mod W(p)) 
Q even Q k -p (mod W(p)) 
Q odd Q k 1 (mod W(p)) 
Q _ I impossible 
I 0 mod 3 S k 1 (mod W(p)) 
I 1 mod 3 S k _ p2 (mod W(p)) 
I 2 mod 3 S k -p (mod W(p)) 
I _ Q impossible 
I O mod 3 I k _p, p2 (mod W(p)) 
I 1 mod 3 I k 1, p (mod W(p)) 
I 2mod 3 I k 1, p2 (modW(p)) 

Proof. First consider the case where p is an S prime. Then for some integers ao, 
bog co we have that f(x) (x - a0)(x - bo)(x - co) (mod p). We have assumed 
that p + d and thus the factorization of f lifts uniquely to a factorization f(x)= 
(x - a)(x - b)(x - c) (mod p>) for integers a, b, c. Now assume n has some 
signature mod p'. By Lemma 4 and Corollary 8 of [1] we have W(pv) = W(p) and 
W(p) I p - 1, and so by Theorem 7 of [1], 

(1) ~ a_ a, bP b, cP c (mod p). 

If n is S mod p>, then from Theorem 7 of [1] we have pvk 1 (mod W(p)) and so 
p 1 (mod W(p)) implies k 1 (mod W(p)). If n is Q mod pv then from Theorem 
3 of [1] there is a permutation of a, b, c so that aP k = a, bP k c (mod p>) and 
then (1) yields the desired conclusion. Finally, if n is I, then Theorem 3 of [1] says 
that for some permutation of a, b, c we have aP k = b, bP k c (mod pV) and 
again (1) yields the desired result. 

We now consider the converse for S primes p. If k 1 (mod W( p)), then since p 
is S we have p 1 (mod W(p)) and thus pvk = n 1 (mod W(p)). Since by 
hypothesis W(pv) = W(p) we see that n 1 (mod W(pv)), which by Theorems 3, 7 
of [1] shows that n has an S signature mod p'. Now assume that ak-l 1, bk c 
(mod p). Since W(pv) = W(p) we have that (1) holds and so an- -1, ba c 
(od pV). Then abc -1 (mod pn) implies c-a -nab-n -1- =b (mod p)A Then 
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again by Theorem 3 of [1] we see n has a Q signature mod p>. The statement that 
a k b, bk c (mod p V) implies that n has an I signature mod pP follows in exactly 
the same way. 

Now assume that p is a Q prime. Again, of course, Lemma 4 says W( pV) = W( p) 
if n has some signature. If n has an S signature then by Theorem 7 of [1], 
n = pVk- 1 (mod W(p)). Then Corollary 8 of [1] and the hypothesis that p is a Q 
prime yields p2 1 (mod W(p)) so that k =1 (mod W(p)) if v is even and k = p 
(mod W(p)) if v is odd. Now assume n has a Q signature mod pV Let $ be any 
prime of K lying over p. Then from Theorem 3 of [1] there is a permutation of the 
roots a, /3, y of f(x) such that a' a, /n y, yn /3' (mod $V). Also from 
Theorem 7 and Corollary 8 of [1], a(x a, 13P /3, yP2 y (mod A). Combining 
these two relations yields a k = a , 1k = y, yk = / (mode) if v is even and 
a pk = a, ppk = y' pk = / (mod A) if v is odd. Also from Theorems 3, 6 of [1] we 
have that (aP, /P, -yP) is a 2-cycle permutation of (a, /, -y) mod . If /3PP , 

-y, yP a (mod $), then a -yP /3?ZP _' Ay (mod ), contradicting the 
hypothesis that p + d. Similarly, yP -y, aP /3, /3P a (mod A) is impossible. 
Thus aP a, 3P -y, yP /3 (mod A). Then if v is even we see aP = aP /k, 

yP _ 'k (mod A) and so k p (mod W(p)). Similarly, if v is odd we see that 
pk p (mod W( p)) and so gcd( p, W( p)) = 1 yields the result. Finally, it was noted 
in Proposition 13 of [1] that n cannot have an I signature mod p and so cannot have 
one mod pV either. 

We now prove the converse for Q primes p. We are assuming k 1, p 
(mod W(p)). Since p is a Q prime we have p2 =1 (mod W(p)). Thus n = pVk 1 
(mod W(p)) if v is even and k 1 (mod W(p)), or if v is odd and k p 
(mod W(p)); n 1 (mod W(p)) and W(p) = W(p v) imply n has an S signature. 
Moreover, we see n = pvk p (mod W(p)) if v is odd and k 1 (mod W(p)), or if 
v is even and k p (modW(p)). This, with W(p) = W(pv), implies that a' = aP, 
/3nl /3p, yf- yP (mod Sk>). Since p has a Q signature, there is a permutation of a, 
/3, y such that aP a, /3P _y, yP /3 (mod $). We show that these last con- 
gruences hold mod s as well by showing by induction that for 1 < [ < v we have 
them modif. We have that W(pv) = W(p) and W(p) I p2 -1 SO as a, 
/3P /3, -y P y (mod Sk>). Assume we know the result for [: a P a a, /3P P y 
yP / (mod s) for [ < v. Then from Lemma 2, P2 _ yp (mod SWL1) and so 
,8P /3 (mod $ V) implies yP /3 (mod 4M$+1). Similarly for the other two con- 
gruences. Thus we have a P a, /3P -y, y P /3 (mod Sk>) and aO a_ , P, /3P, 

y-l y (mod Sk>), which combine to yield aO a, an _ y' /3 (mod Sk>) Since 
this is true for all $ | p and p is unramified, we see from Theorem 3 of [1] that n 
has a Q signature mod p>, as desired. 

Finally, we consider the case where p is an I prime. If n has a signature then by 
Lemma 4 again, W(p") = W(p). If n has an S signature then n = pvk 1 
(mod W(p)). Since p is an I prime we have p3 1 (mod W(p)). These two 
congruences yield the desired results. Now assume n has an I signature mod p 
Then for some permutation of a, /3, y we have ao /3, a/n y, yn a (mod Ad). 
Since p is an I prime we have W(p) I p3 - 1 and so ai3 a, a a /3, yP- 

(mod q3). If, for example, v 0 (mod 3), we see ak/3 3k ay k a (mod $). 
Now (aP, /IP, -yP) is a 3-cycle permutation of (a, /3, y). If ax /3 (mod A) we see 
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ak , , k = yP (mod A) and so k = p (mod W(p)). If axP -y (mod A 
then a P _8 (mod A) and so k p2 (mod W(p)). The other cases all follow 
similarly. 

In the converse situation for I primes p we assume k 1, p, p2 (mod W( p)) and 
W(pV) = W(p). All the various cases are similar (or simpler) and so we will just 
consider the case where v 2 (mod 3) and k 1 (mod W(p)). We have W(pV) = 

p3 nd so 3 a,P3 / yP3 -y (mod $). We may assume, since 
a is an I prime, that aP /3, /P _y, yP a (mod A). Then from Lemma 2 we 
have a p 3P A 1 (mod E>) and so, a^3 a /3P3 /3 (mod ad) and v 2 (mod 3) 
implies aP' /P (mod Ad) and a(x /3P (mod A Similarly, yP _ (mod A 
Then aP" -3P aP- (yP2)P -y (mod Ad). Since k 1 (mod W(p')) we have 
then a' = ap k =y (mod Ad). Similarly, ny' /3, 3' = a (mod Ad). This is true for 
all v | p and so we see n has an I signature mod p', as desired. [1 

As an example, the most interesting composite discovered in [3] for the Perrin 
Sequence (d = -23, r = 0, s = -1) was n = 24306384961 = 19- 53 79- 89 3433. 
From Appendix I of [1] we see that 19, 53, 79, and 89 are all Q primes. Moreover, 
for p = 19, 53, 79, 89 we verify that n/p = p (mod p2 - 1). In fact, for each of 
these p, W(p) = (p2 - 1)/2 as is recorded in Appendix I of [1]. Finally, p = 3433 
is an S prime and we can check that n/p 1 (mod 3432). Of course, W(3433) 13432. 
Thus from Theorem 1 we see that n has an S signature. 

We note from [3] up to 50 x 109, that 24306384961 is the only PSP Perrin that 
was not a product of S primes. All 55 have S signatures. 

We also have 

COROLLARY. Let p + 2d be a prime, v > 1 be an integer. Then pV has a signature if 
and only if W(pV) = W(p). 

Proof. Indeed, this is the case k = 1 of Theorem 1. [ 
The signature can be read off the table of Theorem 1. For example, if p is a Q 

prime then p has a Q signature if v is odd and an S signature if v is even 
(assuming W(pv) = W(p)). 

3. The n-Adic Congruence. In Theorem 14 of [1] it was shown that if p is a prime, 
p + 2d, then for all j > 1, 

A(pi) A(pi-') (mod pi). 

We thus obtained limj . A(pi) existing in the p-adic integers. These limits are 
Abelian integers and have interesting applications (see [11]). In this section we will 
show that this result is not peculiar to primes, but holds more generally. We prove 
here 

THEOREM 2. Let n, m > 1 be integers such that gcd(m, 2d) = 1 and m I n. Assume 
n has a signature mod m (either S, Q or I). Then for all]j > 1, 

A(ni) A(nj-') (mod ml). 

Proof. Let $ be any prime ideal of IK and assume [ > 1 is the largest integer 
such that Ad | m. Then by Theorem 3 of [1] we see that (aun, /n, _yn) is a permutation 
of (a, /3, y) mod As. In Lemma 2 let el be any one of a n, /n, ayn, and let E2 be the 
one of a, /B, y corresponding to it in the permutation, 9f = % J/ and the m of Lemma 
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2 is the n here. Then b Im I n implies n E I f = f and thus by Lemma 2, c1' - 8' 
(mod AU+?1)). This is true for -1 = each of a', f3 , yon, and so we obtain 

anJ+1 + fnJ+l + -ynJ+l =anJ + 
f3?J + -ylJ (mod 1A(J+1)), 

i.e., A(nj+1) = A(nJ) (mod $wL(j+l)). Since this is true for all j m, the result of the 
theorem follows. [1 

COROLLARY. If gcd(n, 2d) = 1 and n has a signature, then for allj > 1, 

A(ni) A(ni-1) (mod n'). 

4. Outsiders. In [1] we defined the concept of an "outsider". This was important in 
constructing PSP A and in a sieving process described in Section 4 of [1]. 

We recall the definition of an outsider: Let p be a prime, and k be an integer. If 

(2) A(kp) A(1) (modp) and A(-kp) A(-1) (modp), 

but 

k X pi (modW(p)) (j = 0,1,2,...), 

then k is called an outsider for p. 
It should be recalled that if k pi (mod W(p)), (2) does hold. This is because we 

know from [1] that A(kp) A(k) (mod p) and so, writing k = pi + aW(p), we see 

A(kp) A(k) = A(pi + aW(p)) A(pi) A(pi-1) 

_. -(1) (mod p 

Similarly, A(-kp) A(-l) (mod p). Thus the outsider k's for p are in some sense 
the exceptional case. This was important in the sieving, since it was shown in [1] that 
they really are exceptional. 

This is strengthened here because as a Corollary of Theorem 1 we see that we may 
in fact characterize those n = kp where n has a signature mod p and k is an 
outsider for p. 

THEoREM 3. Assume n = kp has a signature mod the prime p where p + 2d. Then k 
is an outsider for p if and only if n has a Q or I signature and p is an S prime. 

Proof. If k is an outsider for p we may simply look at the table of Theorem 1 to 
see that only those two cases are allowable. Conversely, assume n is Q or I and p is 
S. Then from Theorem 1, b'_ c (mod p). If k pi (mod W(p)) we have bk bP' 

b (mod p), i.e., b c (mod p), which contradicts the assumption that p + d. E 

5. Acceptable Signatures. In [1] we strengthened the primality test by adding an 
extra condition. These conditions will be recalled. Let n > 1 be an integer with 
gcd(n, 2d) = 1. Write n = Pi ... pt as its prime factorization. 

First we say n has an acceptable S signature if and only if n has an S signature 
and (d) = 1 ((-) is the Jacobi symbol). For a prime p + d we have (d) = -1 if and 
only if p is a Q prime. Thus S primes have acceptable S signatures. Moreover, we 
see 

n has an acceptable S signature if and only if n has an S 
signature and the number of Q primes pi (1 < i < t) is even. 
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Similarly we say n has an acceptable Q signature if and only if n has a Q 
signature and (d) = -1. We obtain 

n has an acceptable Q signature if and only if n has a Q 
signature and the number of Q primes pi (1 < i < t) is odd. 

The definition for I primes is more complicated. See [4] for the necessary theory. 
Suppose n has an I signature. Then from the definition of an I signature, Eq. (137) 
of [1], we have an integer b satisfying b2 d (mod n). Since n is odd, we may 
assume b and d have the same parity. Then, since d 0,1 (mod 4), we see that 
b' d (mod4n). Write d = b2 - 4cn. Then Fn = nx2 + bxy + cy2 is a quadratic 
form of discriminant d representing n. Consider the group of all classes of forms of 
discriminant d. Then there will be a subgroup of this group of index 3 which will 
represent S primes and not I primes. The two nontrivial cosets of this S subgroup 
will represent I primes but not S primes. We say n has an acceptable I signature if 
and only if Fn does not lie in the S subgroup. 

Now the S and I primes p are the primes that split completely in F = Q(Fd) (we 
ignore, as usual, the primes p l 2d) and are distinguished by whether each factor 
from F splits or is inert in K, respectively. Thus, the Frobenius map for K/F 
distinguishes the S and I primes giving the index 3 subgroup noted above. (The 
correspondence between forms and ideal classes is a multiplicative isomorphism.) 
For example, if n = pq where p is S and q is I and n has an I signature, we write 
PIF = PP', qIF = qq' in F and we see Fn must correspond to one of pq, pq', p'q, 
p'q'. Since the classes of forms for p, p' are S and for q, q' are I, we see Fn must be 
an I form and so n has an acceptable I signature. 

In passing, we note that although this test seems complicated, in practice the 
primality test is run for certain small discriminants where the group of forms can be 
given explicitly. Then checking acceptability is simply done by reducing the form Fn 
and comparing the result to the explicit list. In particular, for the much discussed 
cases of d = -23, -31, -44 in [1] the full group of forms has order 3 and the 
subgroup of S forms consists of just the identity form. 

6. Construction of Examples. In this section we will show how the above can be 
used to construct acceptable signatures if we do not take as given in advance the 
particular recurrence. This answers a question left open in [1] concerning the 
existence of acceptable Q and I signatures. 

We begin by constructing a composite with an acceptable Q signature. We will get 
n = pq with p an S prime and q a Q prime. We noted in Section 5 that an n with a 
Q signature of this shape is automatically acceptable. From Theorem 1 we see the 
conditions that must be satisfied are q is a Q prime and 

(3) p- I (mod W(q)) 
and 

f (X) (X -a)(X -b)(X -c) (mod p) (a, b, c EE Z), 

where 

aqua l 1 (modp), b c (modp), abc 1 (modp). 
This latter condition is equivalent to 

(4) =q-l -1 (mod p), b"'1 = a-' (mod p), b" c (mod p). 
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First choose any recurrence fo and a Q prime for fo. For example, fo is Perrin and 
q = 11. Then W(q) = 120 and ro = 0, so = -1. 

Next choose any prime p satisfying (3). In the example, p = 241 is the least such 
prime. Now solve the equations (4) for a, b, c. Let g be a primitive root mod p. 
Assume a gV (mod p) and b gl (mod p). Then we need to solve 

v(q - 1) 0 (modp - 1) and ft (q + 1) -v (modp - 1). 

These can usually be solved. For our example, 
10v 0 (mod 240) and 12- -v (mod 240), 

and we see v = 24t and IL -2t (mod 20). Take, for example, t = 1 so v = 24, 
j = 18. Then g = 7 gives a 724_ 36, b_ 718 236, c- 23611 162 (mod241). 
Thus 

f1(X) (x- 36)(X - 236)(X - 162) X- 193 + 22X- 1. 

So r1 = 193, s1 = 22. Now by the Chinese Remainder Theorem (CRT) solve 

r ro (modq), s so (modq), 

r r1 (modp), s s, (modp). 

In our example, this gives r 1639 (mod 11 - 241 = 2651), s 263 (mod 2651). 
Thus for 

f(X) = X3 - 1639X2 + 263X- 1, 

n = 2651 = 11 - 241 has an acceptable Q signature. Indeed, one can check that 1964 
is a root of f (X) mod 2651 and the signature of 2651 is 

170 263 1447 1447 1639 2086 
for which the definition, Eqs. (134) and (135) of [1], for a Q signature are valid. 

In computing the signature of 2651 we note that W(2651) = lcm(W(11), W(241)) 
= lcm(120,40) = 120. Then since 2651 11 (mod 120), we see that the signature of 
2651 is the same as the signature of 11 mod 2651. 

In the above example, we have from Theorem 3, since p = 241 is an S prime, that 
241 is an outsider for 11. We now give an example of a composite n with a Q 
signature where no outsiders are present. From Theorems 1 and 2 this is only 
possible if n is a product of only Q primes. Moreover, from Section 5, in order for n 
to have an acceptable Q signature, it must be a product of an odd number of Q 
primes. Thus we will construct an n = P1P2P3 where Pi, P2' P3 are all Q primes 
and n has a Q signature. 

As is evident from Theorem 1, in order to construct suitable composites for 
suitable recurrences we must place severe divisibility requirements on the periods of 
the primes. To do this, we first find an appropriate type of prime p for any (say 
Perrin) recurrence and then reduce the period of p by changing the recurrence 
appropriately. The following lemma isolates this technique (greater generality in the 
lemma is easily given, but is not necessary here). 

LEMMA 5. Let Af (n) be the sequence corresponding to the cubic polynomial f. Let 
p + 2d be a prime with a T signature, where T = Q or I. Let u j Vf ((p) be a positive 
integer such that Vf ((p) + u(p - 1) (Wf (p) = period mod p with respect to f ). Set 

g(X) = X3 -Af (u)X2 + Af (-u)X - 1. 
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Then for g, p is also a T prime, and 

Wg(p) = W4/(p)/u. 
Proof. As always, a, /3, y are the roots of f. (If T = Q, assume a corresponds to 

the rational root.) Then from Corollary 9 of [1], we have Wf ( p) = ordp Pf = ordP y 
and ordp a j Wf(p). (Here ordp denotes the multiplicative order in IK/pIK.) Now 
g(X) has roots au, /3u, yu. We note that ordp ju = ordpyu = Wf4(p)/u and 

ordp au I Wf (p)/u since 
ord( a 

ord a = = 
P gcd(ord a, u) 

Thus from Theorem 8 of [1] we see Wg(p) = Wf (p)/u. Now p is an S prime for g 
if and only if Wg( p) I p - 1, which we have assumed is not the case. Moreover, it is 
impossible for a Q prime for f to become an I prime for g, or vice versa, because, 
for example, f generates a degree 2 (T = Q) or degree 3 (T = I) extension of Z/p Z 
which cannot contain an extension of the other degree. c] 

The integer n = P1P2P3 has a Q signature where Pi, P2' P3 are Q primes if and 
only if 

(5) P1P2 1 (modW(p3)), P1P3 1 (modW(P2)) and 

P2P3 1 (modW(pl)) 

(Theorem 1). Let fo be the Perrin polynomial, o(X) = X3- X - 1. We first 
choose two Q primes for Perrin, Pi = 7, P2 = 11. We have Wfo(pl) = 48 and 
Wfo(P2) = 120. We want to solve the congruences (5) for p3. To facilitate this, we 
choose polynomials fl, f2 such that Wfi(pl) and Wf2(P2) are relatively prime. By 
Lemma 5 we see that for 

f1(X) = X3 - Afo(3)X2 + Afo(-3)X - 1 = - 3X2 + 2X - 1 (mod7), 

P1 = 7 is a Q prime and Wfl(pl) = 16. Also for 

f2(X) X3-Afo(8)X2 + Afo(-8)X - 1 - X3lOX + SX - 1 (mod 11), 
we have P2 = 11 is a Q prime and Wf2(P2) = 15. Now the congruences (5) become 
(6) 7 - 11 1 (modW(p3)), 7p3 1 (mod 15) and llp3 1 (mod 16). 
In particular, W(p3)176 = 4* 19. Of course, W(p3)p32 - 1. We need to get a Q 
prime, not an S prime, so we cannot have W(p3) 1 P3 - 1. So we find a prime P3 so 
that p3 =- -1 (mod 19) (19, not 76, to be sure this congruence is compatible with the 
second two congruences of (6)). By the CRT we solve this congruence and the 
second two congruences in (6) to get P3 4483 (mod 15 - 16 - 19). Now 4483 is 
prime, so set p3 = 4483. We need a recurrence such that p3 is a Q prime; there is a 
50-50 chance that this occurs, so one is readily found. Indeed, 4483 is a Q prime for 
Perrin. We know Wfo(p3) 144832 - 1 = (2 - 33. 83)(22 _19 - 59). We again drop the 
period by Lemma 5. We find that for u = 33 . 83 - 59 we have for 

f3(X) = X3 - Af(u)X2 + Afo(-u)X - 1 = X3 - 1670X2 + 1670X - 1, 

p3 = 4483 is a Q prime and Wf3(p3) = 38. We now have all the conditions (5) 
satisfied for the polynomial f(X) = X3 - rX2 + sX - 1 where r, s satisfy 

r=3(mod7), r=10(modll), r= 1670 (mod4483), 
s- 2 (mod7), s 5 (modil), s 1670 (mod4483), 
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which give for n = 7 11 4483 = 345191 

r 10636 (mod n) and s 113745 (mod n). 

In the definition of a Q signature the root of the polynomial is given by a, 6 
(mod 7) for fl, a2 4 (mod 11) for f2, and a3 1 (mod4483) for f3. By the CRT 
we get a 174838 (mod n) for the root of f. Computing, we get the signature of 
n = 345191 for 

f(X) = X3 - 10636X2 + 113745X - 1 

is 

-121038 113745 248182 248182 10636 -26895, 
which is a Q signature corresponding to the root a = 174838. We note that 

W(n) = lcm(W(P), W(P2), W(p3)) = 16 15 19 = 4560. 

As usual, we have had to drop the period substantially from the maximum 
n2 1 = 11.9 x 1010. 

Next, we briefly show how to find an acceptable I composite. We will construct 
n = pq to have an I signature where p is an S prime and q is an I prime. In 
Section 5 we noted that this configuration for n guarantees that n has an acceptable 
I signature. From Theorem 1 we see we must have 

(7) p 1 or q (mod W(q)) 

and. 

(8) f(X) (X- a)(X- a -)(X- aq ) (modp), 

where a ?q?- 1 (mod p). In order to guarantee the last condition, we need 
q2 + q + 1 and p - 1 to have nontrivial common factors; this is trivial with the 
condition p 1 (mod W(q)), since W(q) I q2 + q + 1, but is also possible for p = q 
(mod W(q)). In order to guarantee p is unramified, it suffices to get a3 # 1 (mod p). 

We first note q = 3 is an I prime for Perrin with W(3) = 13. To make it easier, 
we find a prime p 1 (mod W(3)) and choose p = 53. We choose a * 1 (mod 53) so 
that a'3 1 (mod 53). We see a = 44 (mod 53) works. Then a3 13 (mod 53) and 
a9 24 (mod 53). So define 

f1(X) (X- 44)(X- 13)(X- 24) - - 28X2 + 32X- 1 (mod53). 

So mod 159 = 3 - 53 solve r 0 (mod3), r 28 (mod53) and s -1 (mod3), 
s 32 (mod 53) to obtain 

f(X) = x3 - 81X2 + 32X- 1 (modlS9), 

for which n = 159 has an acceptable I signature. Indeed the signature of 159 for f is 

81 32 67 -22 81 32, 
where (67 - (-22))2 d (mod 159) and 67 + (-22) 81 - 32 - 3 (mod 159). We 
note that W(n) = lcm(W(3), W(53)) = 13. 

It was suggested that it might be harder to construct such composites for Abelian 
cubic polynomials. Of course, for such polynomials only S and I primes are 
possible. As a final example we construct an Abelian cubic with an acceptable I 
composite n. Again we will have n = pq, where p is an S prime and q is an I 
prime. 
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We obtain Abelian cubics by considering Shanks' class of simplest cubics (see [9]): 

(9) f(X) = X - tX2-(t + 3)X- 1, 

which are known to be Abelian. Where before we had two degrees of freedom r, s, 
here we have just one. As a result, the polynomial we construct has very large 
coefficients. 

As in the last example, we need to find two primes p, q and a polynomial f(X) 
satisfying conditions (7) and (8) for which q is an I prime. Now, however, the 
polynomial f(X) has the shape given in (9). This requires that we have the 
congruences 

(10) a1 (mod p), 

(12) a + a + a (modp) 
(12) a-l + aq + a q- -t -3 (mod p). 

Defining t by (11) we see that (11) and (12) may be replaced by 

(13) a + aq + aq + a-1 + a"q + a --3 (modp). 

Our conditions now become (7), (10), and (13) and q is an I prime (we also want to 
ensure f( X) is not ramified at p). 

Our search procedure will now be described. Condition (13) is the one to 
concentrate on, as it is the most difficult to achieve. Indeed, we will achieve it 
without condition (7). Afterwards, condition (7) will be obtained by reducing the 
period as in Lemma 5. This latter is done after we have the simplest cubic we desire. 
Then defining g as in Lemma 5 we have that if f has roots a, /3, y, then g has roots 
au, 8u, yu and thus, even though g is no longer a simplest cubic, it is nevertheless 
Abelian. 

We search for an integer w(3 + w) and a prime p such that p 1 (mod w) (we 
will reduce the period to w) and such that there are integers qo and a satisfying 
q0 + qo + 1 0 (mod w), aw 1 (modp) and (13) is true for q = qo. Given these, 
we first find a prime q qo (mod w). Then find to such that for the simplest cubic 
corresponding to to, q is an I prime with w I W(q) (easy to do since there is a 50-50 

2 q q~~~~~~~~~~~~~~~2 chance that q is an I prime and wIq2 + q + 1). Define t1 a + a + a a + 
a + a'? (mod p). Define t = to (modq) and t t1 (mod p). This t gives the 
desired simplest cubic. Set u = W(q)/w and define g as in Lemma 5. Since 
W(q) + u(q - 1) (i.e., w + q - 1 since WI q2 + q + 1) we see q is an I prime for g. 
Also p is an S prime for g of the desired shape, which is readily checked to be 
unramified. Hence the polynomial g gives the desired Abelian polynomial. 

To find w, p we proceed as follows. Since 3 + w and we need qo + qo + 1 0 
(mod w), we search through w 's all of whose prime factors are 1 (mod 6). For all 
such w, such qo exist. Given such a qo, w we set, for integers v, 

= + + vo + + r-v + D-Pq? + t-Pq2 

1( 2sTv 2s vqo 2+c vqo 2 
= 2 cos ~~+ Cost + Cos 0 

w w w , 
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where t = exp(27Ti/w). We note that if v -+L, ?qOj, ?qj, then qv = q. So 
define 

Fw(X) = (X- nv), 

where the product is over all v such that gcd(v, w) = 1 and where we avoid the 
obvious duplications in qv above. It is readily seen that Fw(X) has integer coeffi- 
cients. For each such w we compute Fw(-3). Suppose p is a prime and p I Fw(-3). 
Then in the field Q(,1) we see p splits completely, and thus there is an integer 
a -w (mod p) where 4 lies over p. For this a, (13) is true for q = q0. We would be 
done if p 1 (mod w). We note that Fw should be irreducible over Q of degree 
4(w)/6 and so the degree of p in Q(tw) divides 6, i.e., p6 1 (modw). So the 
chance of p 1 (mod w) seems reasonably good. 

In performing the actual computations, w = 91 is the first time there is a 

pl Fw(-3) with p 1 (mod w). Indeed, F91(-3) = 2549 1 (mod 91). Then q = qo 
= 107 is a prime such that q2 + q + 1 0 (mod91). For to = -1 we have 107 is an 
I prime with period q2 + q + 1 = 91 127. Also for a = 1933 we have (13) for 
q = 107. Define 

1933 + 1933107 + 19331072 2127 (mod2549). 

Define t -1 (mod 107), t 2127 (mod 2549) and set t = 14872. Finally, we 
reduce the period by setting u = W(107)/91 = 127 and define g as in Lemma 5. 
The polynomial g is Abelian and has n = 107 2549 = 272743 with an I signature. 
We note that for g the coefficient r 14871127 = 7.7 x 10529. The example is not 
small! But the period Wg(p) = Wg(q) = 91 is small. 

7. Conclusions and Questions. The results of this paper clear up completely the 
question left open in [1] concerning the construction of pseudoprimes of various 
types when the recurrent sequence is not specified in advance. In [11], p-adic 
techniques are used to consider these questions from a different viewpoint. But other 
questions are still open and very important. 

First we note that the techniques of this paper still do not allow us to construct a 
cubic polynomial for which there are an infinite number of pseudoprimes. In [8], 
Rotkiewicz shows the analogous result for many second-degree recurrent sequences, 
and this is a well-known result for the first-degree case (see [10]). Looking at the 
methods used in [8], we see they depend on the existence of two primitive prime 
divisors of certain related sequences. It is not at all clear what should replace these 
sequences in the cubic case. 

The next question I would like to discuss is the one most emphasized in [1]. 
Namely, for the Perrin sequence (r = 0, s = -1), do there exist any composites with 
acceptable Q or I signatures? No examples are known. Let us see what this means. 
The problem has already been met a little in the construction of an Abelian example 
in the last section. There, reducing the degree of freedom from two (finding r, s) to 
one (finding t), complicated matters considerably. Of course, now we have no 
degrees of freedom. 

Let us consider what should be one of the easier cases in more detail. Let us try to 
construct a composite n = pq, where p is an S prime, q is a Q prime, and n has a 
Q signature. As above (from Theorem 1), we need to determine a Perrin Q prime q 
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and S prime p satisfying conditions (3) and (4) for rational integers a, b, c, with a, 
b, c distinct. Comparing coefficients for f(X) - - X - 1 and eliminating the a, 
c we see that we need (3) and 

(14) be21 - 1 (modp), b + b + b (modp), 
b-q + b-1 + bq+1 -1 (modp), 

for some integer b with b, bq, and b-q-1 distinct. It is manifestly very difficult to 
find an integer b and primes p, q satisfying (3) and (14). No case is known. 

q21 We note that (14) is equivalent to finding an integer b such that b -1 1 
(modp) and b is a zero of f(X) = X - X - 1 and g(X) = X2q+l + Xq+2 + 1. 

Set Rq = Resultant of f and g. 
A formula for Rq can be given in terms of A(n) for n near q and 2q, so Rq can be 

computed in O(log q) steps. We note that for the first few q primes, R5 = 52, 

R7= 72, R11 = 23 _ 112, R17 = 172- 59, and R19 = 192. 173. It is not hard to 
show that for Q primes q, q2| Rq and to give congruence conditions for the S or I 
primes dividing Rq. Moreover, if for an S prime p, p2 JRq then it can be shown 
that we are more than likely to obtain (14). In these examples the S primes p divide 

q21 only to the first power, and indeed neither (3) nor b" -1 1 (mod p) are satisfied 
(indeed it can be shown that (14) implies p2 I R q). An example might be constructed 
by examining the R q more closely, but it is still seen to be very unlikely for any 
given value of q. 

We note in passing that similar statements can be made if q is an I prime with 
the same resultant R q. Here one can show q3 3 Rq and for an S prime p to work we 
need p3 I Rq. We note R31 = 313 - 1669 for the S prime 1669 and R29 = 293* 33 - 52. 

More investigation is necessary here. 
One final avenue of exploration will be discussed. In [12] it is shown that there is a 

probability of at least 1/2 that the Euler Test for primality detects a composite. In 
[6] Rabin shows that there is a probability of at least 3/4 that Gary Miller's 
so-called strong primality test will detect a composite (see also [5] and [10]). Rabin's 
test may be verified in the following way: For simplicity, let n be a square-free 
composite integer and let R(n) be the number of integers a such that I < a < n and 
gcd(a, n) = 1 and n is a strong pseudoprime a. For an odd integer m write 
m - 1 = 2km urM where 2 + Ur. Say there are t primes p dividing n. Then 

(15) R(n) +2t - gdu, up), 

where K = min kp fp I n). This is easily proved (see [7]). A simple analysis shows that 

(16) R(n)/0(n) < 4 

yielding Rabin's result (+(n) is the Euler Phi Function). Moreover, the extreme 
cases are easily given. 

The test under consideration in this paper is manifestly much stronger than the 
strong pseudoprimality test, and so an analogous result to Rabin's (and Solovay and 
Strassen's) should yield a better result than (16). The analogue to (15) can be 
derived, but because of the existence of S, Q, I primes, each with their own 
peculiarities, the formula is much more complicated. Given an integer n, we let the 
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r, s in f(X) = XI - rX2 + SX - 1 range independently through a complete residue 
system modulo n for n2 different values of r, s. Let N(n) denote the number of 
these r, s such that n is unramified and has a signature. Again, for simplicity, 

assume n is square free. For a prime p I n write n = mp. Then 
(17) 
N()=H Algcd(m - 1,p - 1)2 + gcd(m - p, p - 1) + gcd(m _ p2, p2 +p ? 1) 

pin 

gcd(m2 - 1,p - 1) + gcd(m - 1,p2 _ 1) - 2gcd(m - 1,p - 1) 
pin 

-- 2 

+ HF, gcd(m2 + m + 1,p - 1) + gcd(m - 1,p2 + p + 1) + gcd(m - p,p2 + p + 1) - 3e(p) +n ~~~~~~~~~~~~~~3 
p I n 

where 

ep)_(3 if 3 1gcd(m -1, p- 1), 
1 otherwise. 

This result is derivable from Theorem 1. The first term counts the number of S 
signatures, the second the number of Q signatures, and the third the number of I 
signatures. As opposed to Rabin's simpler formula (15), from which (16) is readily 
derived, the various gcd's to bound in (17) seem much less tractable. It would be 
hoped that N(n)/n2 can be shown to be quite small, allowing an improvement in 
the Rabin test-even allowing for the added computational complexity of the 
current test (at least for n large). 

The following is a table of a few Carmichael numbers and N(n)/n2. These 
numbers tend to maximize the contributions due to S signatures. 

n N(n)/n2 n N(n)/n2 

561 = 3*11 * 17 1/31.65 7045248121 = 821 * 1231 . 6971 1/215.53 
1729 = 7- 13 * 19 1/28.64 2000436751 = 487 . 1531 *2683 1/215.33 
2465 = 5 *17-29 I 1/92.53 
8911 = 7 * 19 * 67 i 1/104.12 

We note that for Carmichael numbers n = P1P2P3' N(n)/n2 > 1/63 = 1/216. 
Finally, we note that for Lucas-Lehmer sequences the analogue of (16) could also 

be asked. These primality tests are discussed in [2], where a version of the strong 
primality test is given. A formula analogous to (15) can be derived for this strong 
Lucas-Lehmer test, but again deriving a result similar to (16) seems difficult. 

Department of Mathematics 
University of Maryland 
College Park, Maryland 20742 

Technion 
Israel Institute of Technology 
Haifa, Israel 

1. W. W. ADAMS & D. SHANKS, "Strong primality tests that are not sufficient," Math. Comp., v. 39, 
1982, PP. 255-300. 

2. R. BAILLIE & S. S. WAGSTAFF, "Lucas pseudoprimes," Math. Comp., v. 35, 1980, pp. 1391-1417. 
3. G. KURTZ, D. SHANKS & H. C. WILLIAMS, "Fast primality tests for numbers less than 50 * 109," 

Math. Comp., v. 46,1986, pp. 691-701. 



CHARACTERIZING PSEUDOPRIMES FOR THIRD-ORDER LINEAR RECURRENCES 15 

4. H. W. LENSTRA, "On the calculation of regulators and class numbers of quadratic fields," J. A rith., 
1980 (J. V. Armitage, ed.), Cambridge Univ. Press, 1982, pp. 123-150. 

5. G. L. MILLER, "Riemann's hypothesis and tests for primality," J. Comput. System Sci., v. 13, 1976, 
pp. 300-317. 

6. M. 0. RABIN, "Probabilistic algorithm for testing primality," J. Number Theory, v. 12, 1980, pp. 
128-138. 

7. K. ROSEN, Elementary Number Theory and Its Applications, Addison-Wesley, Reading, Mass., 1984. 
8. A. ROTKIEWICZ, "On the pseudoprimes with respect to the Lucas sequences," Bull. A cad. Polon. 

Sci., v. 21, 1973, pp. 793-797. 
9. D. SHANKS, "The simplest cubic fields," Math. Comp., v. 28, 1974, pp. 1137-1152. 

10. D. SHANKS, Solved and Unsolved Problems in Number Theory, Chelsea, New York, 1978. 
11. D. SHANKS & W. W. ADAMS, "Strong primality tests II. Algebraic identification of the P-adic limits 

and their implications." (In preparation.) 
12. R. SOLOVAY & V. STRASSEN, "A fast Monte-Carlo test for primality," SIAM J. Comput., v. 6, 1977, 

pp. 84-85. 


	Cit r12_c12: 
	Cit r6_c6: 


